
1 X 18MW Captive Power Plant – KCP Cement Ltd.,

V Madhusudan Rao N L Srinivas – Dy.GM (Energy Mgr.) Vice President – Operations Cpp.rkpuram@kcp.co.in, vmr@kcp.co.in, 9491373671 9491296172

About "The KCP Limited"

941

"Celebrating more than 80 years of success"

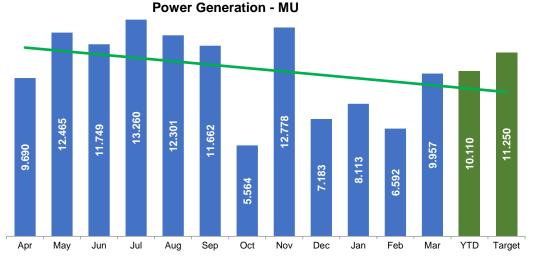
2014

1958

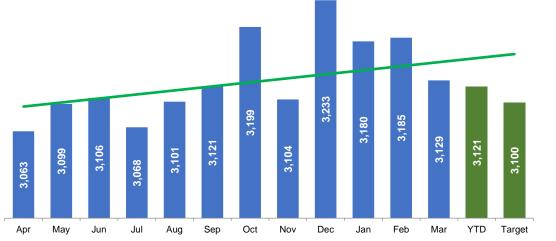
"Journey started with setting up of 800TCD sugar plant at Vuyyuru, krishna Dist. Andhra Pradesh by Sri.V.Ramakrishan Founder of KCP"

"India's first dry process cement plant was installed at Macherla by Humboldt AG. Germany"

"Hydel Power Division setup at Nekkarikallu, Andhra Pradesh on the Guntur Canal of Krishna river to generate 8 MW of power"

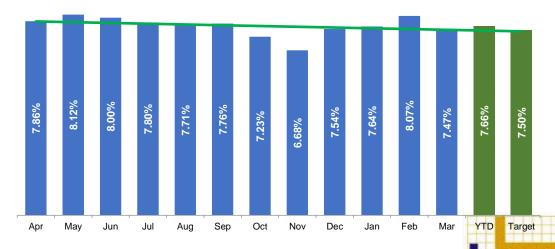

"Wind Power generating Unit setup at Uthumalai village in Tirunelveli District of Tamil Nadu"

"Cement Plant II line # 1 Commissioned at Ramakrishnapuram, Muktyala, Andhra Pradesh, Line #2 commissioned in 2018 at the same location"


"Commissioning of 1.15 MW Solar at Muktyala Cement Plant, Ramakrishnapuram, Muktyala, Andhra Pradesh"

"Commissioning of 18MW Thermal Power Plant at Muktyala Cement Plant, Ramakrishnapuram, Muktyala, Andhra Pradesh"

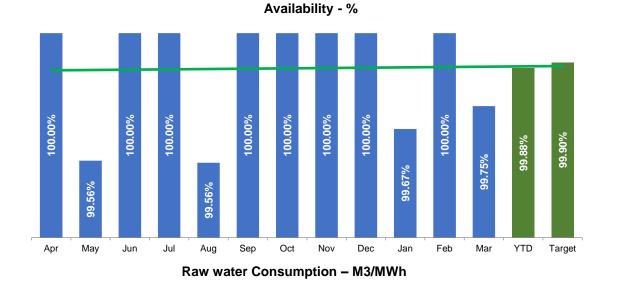
CPP – KPI's at a glance (FY 2021-22)

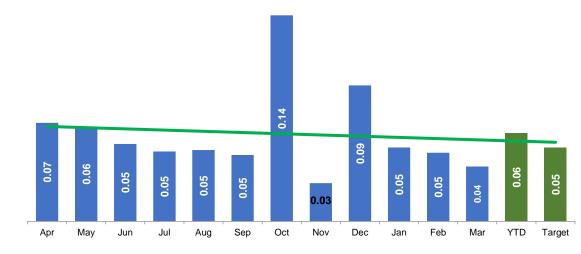


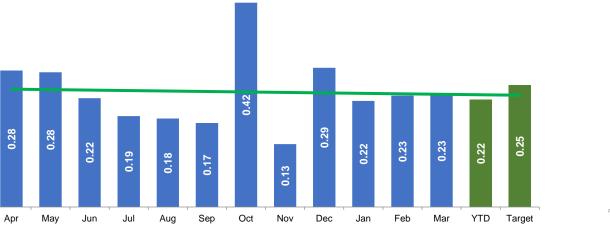
Station Heat Rate – Kcal/KWh

Plant Load Factor-% 100% %66 93% 91% 92% %06 81% 65% 61% 54% Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar YTD Target

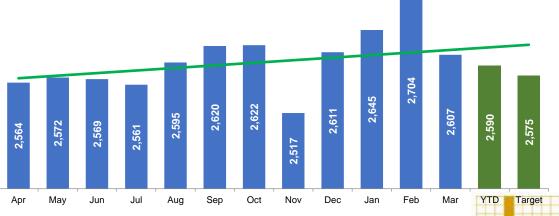
Auxiliary Power Consumption - %



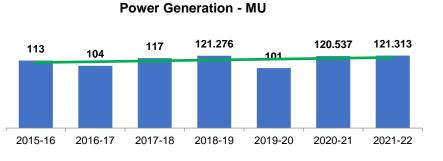

CP


Auxiliary power consumption has raised due to:

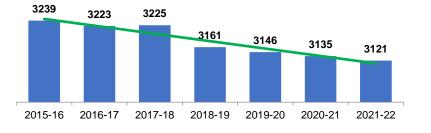
- V Air ingress was high in air preheater till Oct'21 (Major overhaul), the same is attended by replacing 540 no of tubes in 1st module.
- V Usage of Indian coal with low GCV and high ash has lead to increased CHP & AHP run hours.
- Imported and indigenous coal was having high iron contaminations which lead to frequent tripping of CHP that in turn lead to r further increase in power consumption.

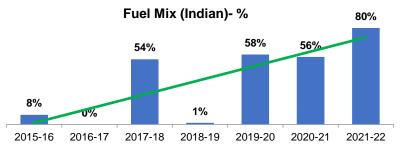

CPP – KPI's at a glance (FY 2021-22)

Turbine Heat Rate – Kcal/KWh

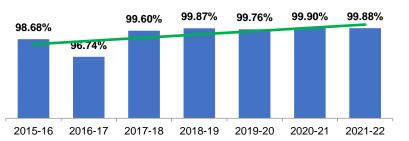


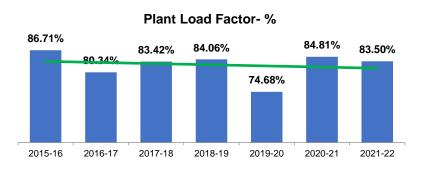
kcp

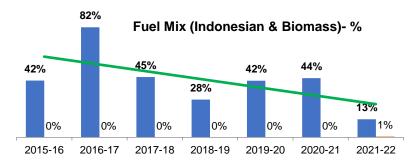

.....


DM water Consumption – M3/MWh

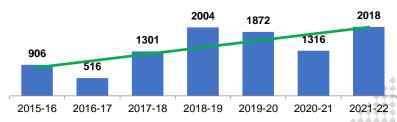
CPP – KPI's at a glance (YoY)




Station Heat Rate – Kcal/Kwh

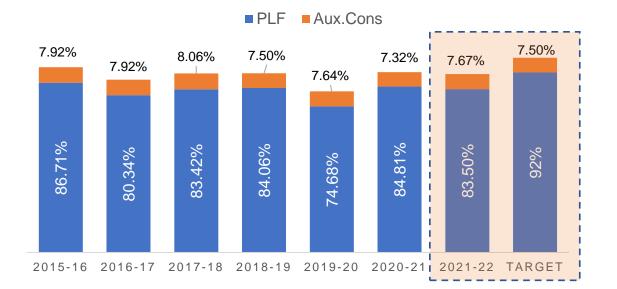


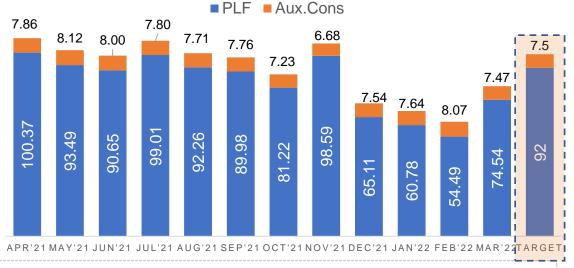
Raw water Consumption - %


Auxiliary power consumption - %

DM water Consumption - %

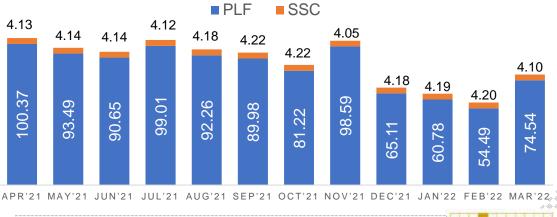
MTBF



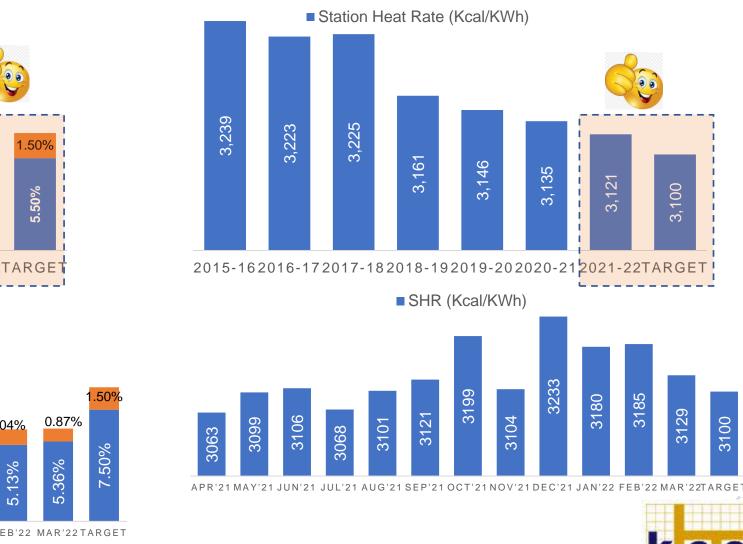

Auxiliary power consumption has raised due to:

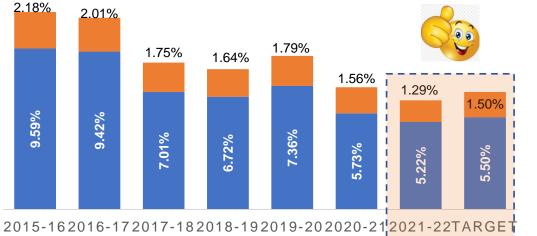
- Air ingress was high in air preheater till Oct'21 (Major overhaul), the same is attended by replacing 540 no of tubes in 1st module.
- Usage of Indian coal with low GCV and high ash has lead to increased CHP & AHP run hours.
- Imported and indigenous coal was having high iron contaminations which lead to frequent tripping of CHP that in turn lead to further increase in power/thermal consumption.




KPI's Comparison with Plant load factor

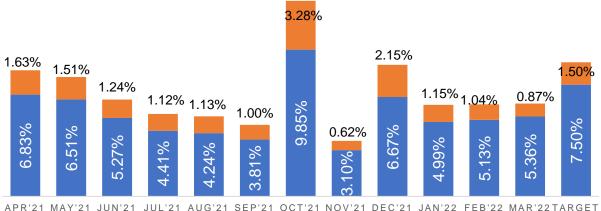
- Marginally PLF% was reduced still Aux.cons% increased due to below:
 - Due to increase in Indian coal consumption (G-13) Increased CHP & AHP operations.
 - Low PLF% in the month of Dec'21, Jan'22 & Feb'22

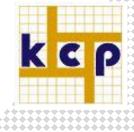



Sp. Steam Consumption increased due to below:
 Due to low PLF in Dec'21, Jan'22 & Feb'22
 In Nov'21 SSC is 4.05T/MWh

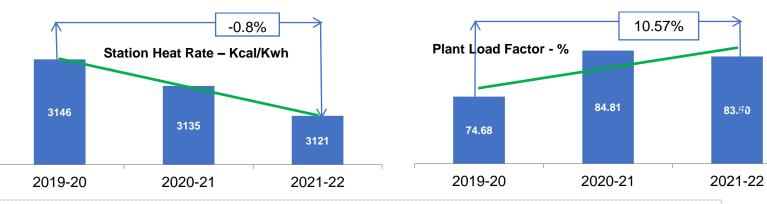
KPI's Sp.Raw water & DM Water consumption

Sp. DM Cons

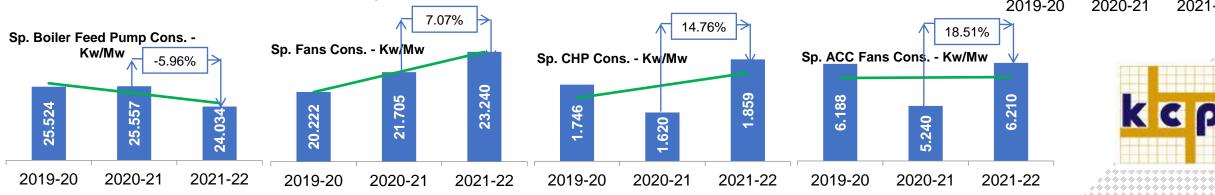


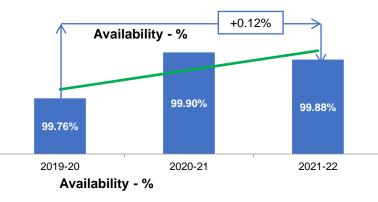

Sp.RW Cons

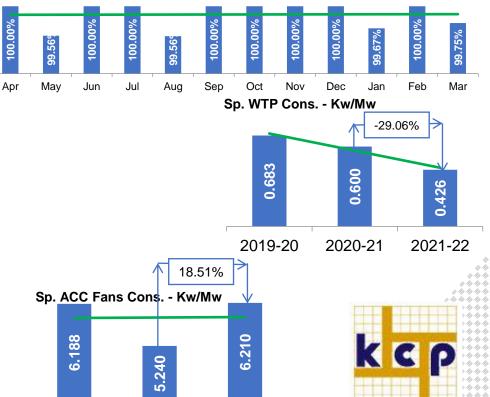
2015-162016-172017-182018-192019-202020-212021-221ARGE


■Sp.RW ■Sp.DM

- Specific Raw water & Specific DM Water consumption are in down trend:
 - Optimizing boiler CBD by monitoring of Phosphates.
 - For road cleaning & ash removal raw water was used. The same is avoided.
- Station heat is reduced due to below:
 - Usage of Indian Coal & PLF%
 - Due to reduction in LOI%.

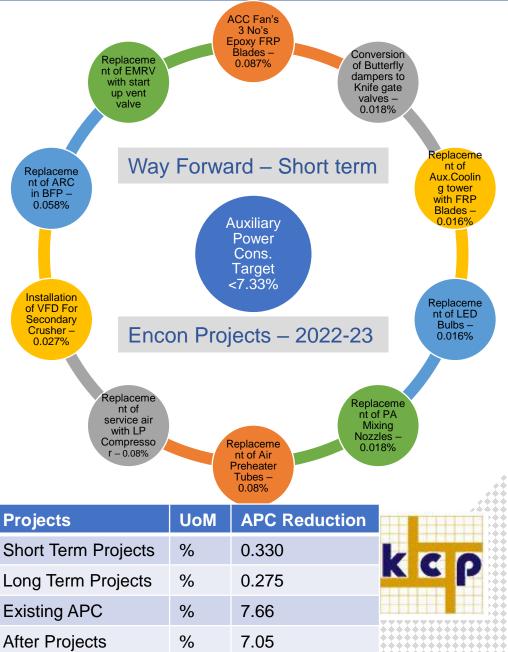



Station Heat Rate & Availability



- Air preheater air ingress% was noticed, the same was attended by replacing 600 tubes in the month of Oct'21.
- Still 240 Tubes are to be replaced as we don't have spare the same are plugged.
- Carried out Turbine, Gear Box & Generator major overhauling, which lead to reduction of specific steam consumption and improved turbine heat rate.
- Optimization of air fuel ratio & Usage of Indian coal (low GCV arb 2550Kcal/kg & Ash 55 to 60%) mix to the max. utilization ie., 80%.
- Indian coal cost was also cheaper than the imported coal cost, which has increased to Rs.22,000/MT and at average Rs.12,000/MT.
- Introduction of Rice husk(Bio-mass) as fuel (4.5% on Thermie Basis) in the month of Nov'21 to Jan'21, Which has further reduced LOI% in fly ash.

Auxiliary Power Consumption

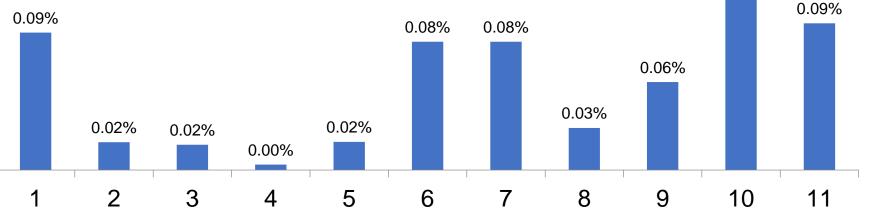

Internal & External Benchmarking – Way Forward

Parameter	Unit	Achieved	Internal Bench mark	National Bench Mark					
Plant Heat rate (3067– Design)	Kcal/Kwh	3121	3100	3018					
Auxiliary Power Consumption	%	7.6	7.5	7.9					
Competitors # 1,2,3,4 – APC %	%	8.5,8.5,8.5,9.4	7.5	7.9					
Installed Capacity	MW	18	18	17.5					
Туре	AFBC	AFBC	AFBC	AFBC					
PLF	%	84	92	82.3					
Coal GCV	Kcal/kg	3063	3060	3210					
LOI in Fly Ash silo	%	4.8	<5.5	5.1					
Sp. Raw Water Consumption	M3/MW	0.26	0.23	0.45					
Sp. DM Water Consumption	M3/MW	0.03	0.05	0.06					
Way Forward – Long term 2022-23									
Replacement of Hybrid bag filter with ESP – 0 185%	ed with control	Consult reduction	biler tancy for on of LOI	Installation of WHRS 1 X 12.5MW					

% to <3%

Open – 0.09%

0.185%



Energy Saving Projects implemented from last three years

Year	No of Proposals	Investments (In Lac Rs.)	Savings (In Lac Rs.)	S.No	Project Description – (2022-23)
2018-19	3	75.1	68.05	1	ACC Fans – 3 Fans No's Epoxy blades replacement with existing blades
2019-20	8	1.2	35.41	2	Replacement of butterfly dampers with knife gate valves
2020-21	2	0	0	3	Replacement of two modules of auxiliary cooling tower with FRP blades
2021-22	30	71.56	236.47	4	Replacement of existing 450/250 SV lamps with 70W LED bulbs
				5	Replacement of damaged PA Mixing

0.19%

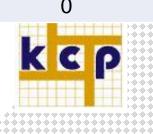
Encon projects proposed for 2022-23 with reduction in Aux. Power Cons. %

1	ACC Fans – 3 Fans No's Epoxy blades replacement with existing blades
2	Replacement of butterfly dampers with knife gate valves
3	Replacement of two modules of auxiliary cooling tower with FRP blades
4	Replacement of existing 450/250 SV lamps with 70W LED bulbs
5	Replacement of damaged PA Mixing nozzles with new nozzles
6	Replacement of plugged APH tubes with new tubes
7	Installation LP compressor as against HP compressor of ash conveying
8	Installation of VFD for secondary crusher
9	Replacement of BFP – ARC valve as the same is passing at low loads
10	Conversion of ESP from existing hybrid filter with ESP
11	Operating BFP with drum level mode with speed mode (FCV – 100% open)

kcp

Summary of encon projects undertaken in 2021-22

S.No	Project Description	Investment	Power Savings	Savings in Rs. @ 5.40
1	Removal of FD Fan suction duct	15,000	109020	5,88,708
2.	Optimizing of boiler blow down/Chemical	NIL	545100	29,43,540
3	Bye passing of Drag chain coal feeders	55,000	64860	3,50,244
4	Interconnecting of Raw water pumps	15,000	8280	44,712
5	Conversion of delta to star connection for CT fans	NIL	64170	3,46,518
6	Boiler feed pump DP control (Dp – 3.0Kg/Cm2	NIL	178020	9,61,308
7	Condensate extraction pump DP Control	NIL	66930	3,61,422
8	Air Preheater leakages arresting	2,56,500	563040	30,40,416
9	Installation of 100 LED lamps at various locations	1,20,000	37950	2,04,930
10	Installation of VFD for Service air compressor	3,75,000	124200	6,70,680
11	Installation of VFD for Instrument air compressor	3,75,000	96600	5,21,640
12	Hydrophobic coatings for various pumps(ACW)	5,00,000	74520	4,02,408
13	Implementing of DP logic for hybrid bag filter	NIL	82800	4,47,120
14	Major overhauling of turbine, gearbox & Generator	50,92,571	2256300	1,21,84,020
15	Mist spray arrangement under ACC Fans	55,000	79350	4,28,490
16	PA Lines/Steam drum, boiler man hole doors Insulation works	26,500	0	0
17	Usage of ETP water to Bed/Fly ash conditioner	66,000	9315	50,301


kcp

..........

Summary of encon projects undertaken in 2021-22

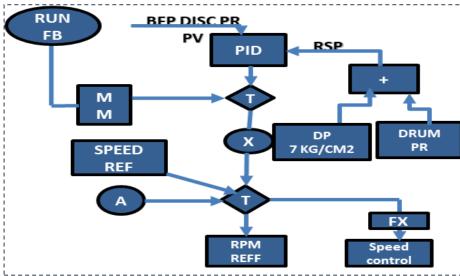
S.No	Project Description	Investment	Power Savings	Savings in Rs. @ 5.40
18	Conversion of Delta to Star conn. For Hot well pumps	NIL	3450	18,630
19	Conversion of Delta to star conn. For CT make up pumps	NIL	2760	14,904
20	Motive steam(Ejector) temp. increased to 380 from 280°C	18,000	Improved Vacuum	0
21	Elimination of Thermostatic valve in service air compressor	5,000	NIL	5,450
22	Usage of Secondary crusher impact bars on both sides	21,000	Spares reduced	0
23	Reduction of booster line in Ash conveying pipes	NIL	Spares reduced	0
24	Hoist arrangement for lifting of charcoal/bed Material – man power	36,000	Man Power 📘	0
25	Flange guards for BFP/Turbine Flanges – Add on safety	5,600	Safety/Reliability	0
26	FD Air reduced by installing damper in spreaders air duct(not n use)	8,400	1725	9,315
27	ACC Fans (bundles/Structural) openings are sealed by cementing	5,500	Power Savings	0
28	Usage of ETP water against Fire hydrant water by installing new line	1,05,000	10695	57,753
29	Reduction of Inst. Air pressure from 6.2 to 5.7Kg/Cm2	NIL	0	0
30	Reduction of service air pressure from 6.2 to 4.8Kg/Cm2	NIL	0	0
31	Drag chain feeders trip logic implemented in case of SPM>45mg/Nm3	NIL	CPCB Requirement	0

Total Investment – 71.56Lac Rs. Total Power Savings – 4379.085MWh/year Total Power Savings – 236.47Lacs/year

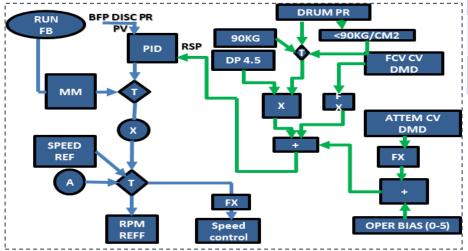
Power & Spares reduction by modifying DCF coal feeders

Description	UoM	Before	After	
Drag chain coal feeders	Ea	15	5	
Power consumption for each feeder	KWh	1.2	1.2	
Power consumption for total feeders	KWh	432	244	
Power savings @ Rs.5.40/KWh	Rs./day	972		
Spares consumption per year	Lacs/yr	12	3	
Total Savings	Rs.	6,35,000		
Investment	Rs	NIL		
Return on investment	Month	Immediately		

TURBINE MAJOR OVERHAULING


TG Major overhauling job activities carried out:

- Turbine de-syncrhonized on04.10.21 at 00:01Hrs
- Turbine dismantling
- Steam flow path measurement
- **Turbine rotor & Carriers** sent to M/s.SV Turbo works, Hyderabad.
- De-finning & re-finning of turbine stages.
- Gear box input pinion shaft burnishing and balancing
- Turbine rotor balancing.
- Generator rotor removal.
- Generator dry ice (CO2) cleaning.
- Electrical testing.
- Assembling of TG


Synchronized on 18.10.21 @ 3.23AM

Implementation of Boiler feed pump – DP logic control

BEFORE LOGIC OF BFP DP

AFTER LOGIC OF BFP DP

Description	UoM	Before After		Remarks
BFP header Pressure	Kg/Cm2	100	95	Pressure reduced
BFP DP across CV	Kg/Cm2	8	4	DP is reduced
BFP Speed	RPM	2569	2545	Speed reduced
BFP Power Cons.	KWh/day	8249	7733	
Drum Level	%	52	52	Drum level same
Power savings	KWh/day	51	6	
Amount invested	Rs	NI	L	In house modification
Monetary savings	Rs./Day	2,786		@ Rs.5.40/KWh
Return on investment	Months	Immed	liately	@ Rs.5.40/KWh

Power Savings attained by removal of FD Fan silencer

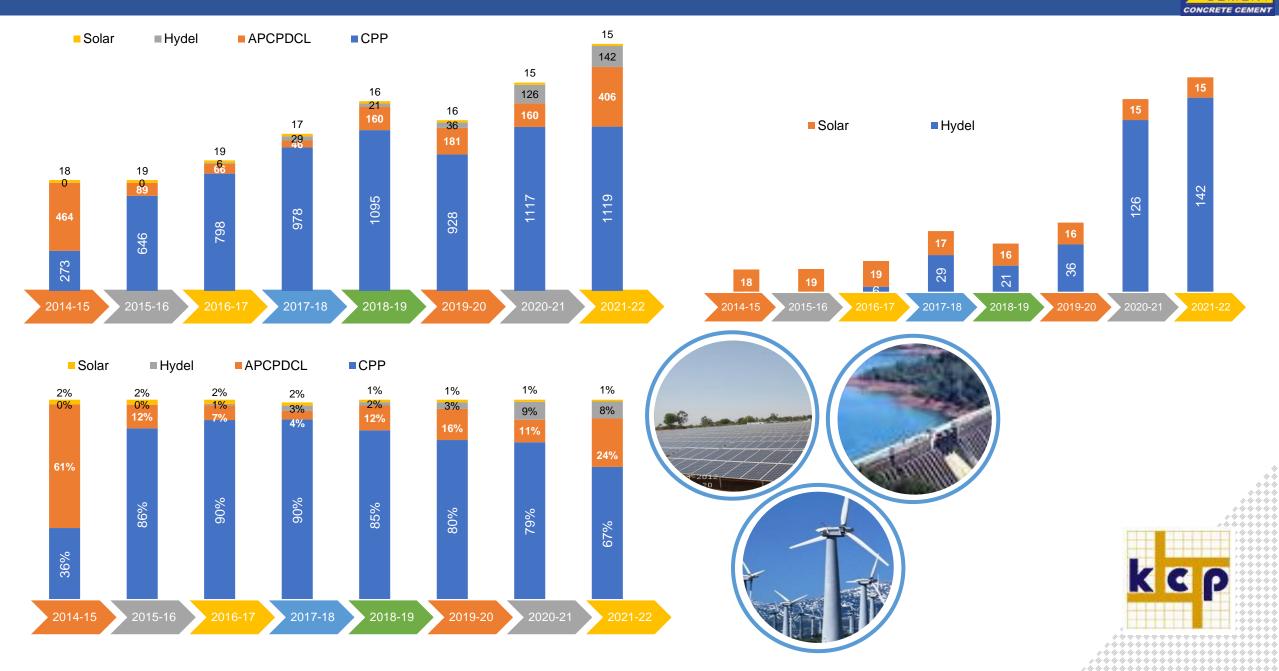
BEFORE

Description	UoM	Before	After	Remarks
FD Fan Suction pressure before silencer	MMWC	80	-	Silencer is removed
FD Fan suction pressure after silencer	MMWC	20	20	
FD Fan Discharge pressure	MMWC	760	760	
FD Fan Speed	RPM	1296	1275	
FD Fan Power Consumption	KW	275	262	
Power Savings attained	KW	31	6	
Cost investment	Rs.	NIL		
Return on investment	Months	Immediately		

AFTER

Power Savings attained by mist spray arrangement under ACC Fans

BEFORE



Description	UoM	Before	After	Remarks						
Mist spray arrangement under the ACC fans when mercury >38°C										
ACC Fans speed	RPM	890	850							
ACC Fans power consumption	KW	3356	3245							
Power Savings attained	KW	11	1							
Vacuum	Kg/Cm2	-0.83	-0.84							
Turbine Heat Rate	Kcal/KWh	2595	2580							
Heat Rate savings	Kcal/KWh	15								

kcp

Power Mix & Utilization of Renewable energy sources

Utilization of Renewable energy resources & TOE

Description	2019-2020 2020-2021 2021-2022		2024 2022	Location	Green Power	Capacity
Description			2021-2022	Cement Unit-II	Solar	1.15 MW
Thermal Energy Consumption TOE	31656	37787	37867	Cement Unit-I	WHR	2.30 MW
Electrical Energy Consumption from Grid KWH	247608	163999	213853	Nekarikallu	Hydel	8.25 MW
	04670	07000	07000	Uthummalai, TN	Wind	3.25 MW
Over all Energy Consumption TOE	31678	37802	37886	Tota	14.95 MW	

Year	Technology	Type of Energy	Onsite/ offsite	Installed capacity(MW)	Gen. MU (KWH)	% of Overall Elec. Energy	Type of Energy	Onsite/ offsite	Installed capacity(MW)	Gen. MU (KWH)	% of Overall Elec. Energy
2014-15	PV Cell – Tilting Type	Solar	Onsite	1.15	0	0%	Hydel	Offsite	8.50	18	2%
2015-16	PV Cell – Tilting Type	Solar	Onsite	1.15	0	0%	Hydel	Offsite	8.50	19	2%
2016-17	PV Cell – Tilting Type	Solar	Onsite	1.15	6	1%	Hydel	Offsite	8.50	19	2%
2017-18	PV Cell – Tilting Type	Solar	Onsite	1.15	29	3%	Hydel	Offsite	8.50	17	2%
2018-19	PV Cell – Tilting Type	Solar	Onsite	1.15	21	2%	Hydel	Offsite	8.50	16	1%
2019-20	PV Cell – Tilting Type	Solar	Onsite	1.15	36	3%	Hydel	Offsite	8.50	16	1%
2020-21	PV Cell – Tilting Type	Solar	Onsite	1.15	126	9%	Hydel	Offsite	8.50	15	1%
2021-22	PV Cell – Tilting Type	Solar	Onsite	1.15	142	8%	Hydel	Offsite	8.50	15	1%

Fly ash utilization

Particulars	UOM	2018-19	2019-20	2020-21	2021-22
Ash Stock in Plant (yard + pond)	Tons	73.86	90.19	68.32	47.82
Ash Generated	Tons	53199.7	36401.7	41338.2	58258.5
Ash Utilization	%				
Ash Utilization in cement manufacturing	MT	17158.6	9578.34	7634.97	18347.8
Ash Utilized in Fly Ash Bricks Manufacturing	MT	36024.7	26845.2	33723.7	39915.7
Ash Utilized in Fly ash bricks	MT	90.19	68.32	47.82	42.88
Ash Utilized in Fly Ash Bricks Manufacturing	%	32%	26%	18%	31%
Ash Utilized in Fly ash bricks	%	68%	74%	81%	68%
Ash Utilized for road pavements					
Ash Utilization in other areas					
Expenditure on Ash Utilization (annual)	INR (lacs)				

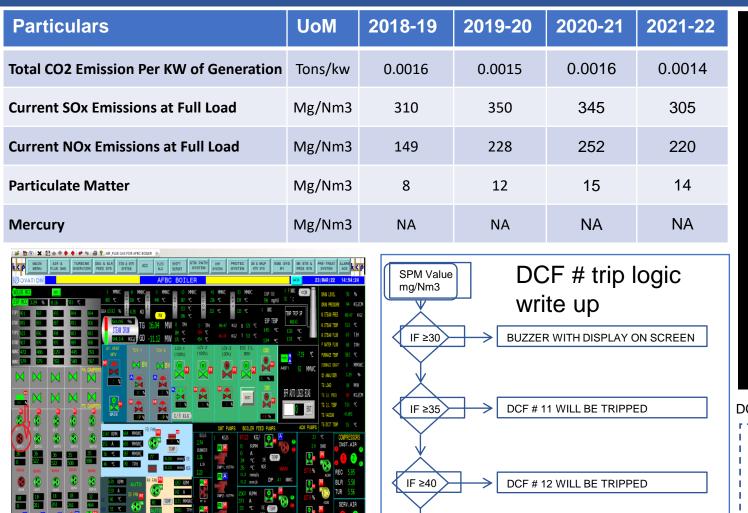
Ash Handling done thru Various methods

Ash Handling Wet Method	%	NIL
Ash Handling dry Method	%	31
Ash Handled Semi-wet method	%	68

Including bed ash, 100% ash generated in cpp is utilized in Cement Plant, 3rd party sales and Own Bricks manufacturing unit

Fly ash silo – 420M3 Dense phase pneumatic handling system

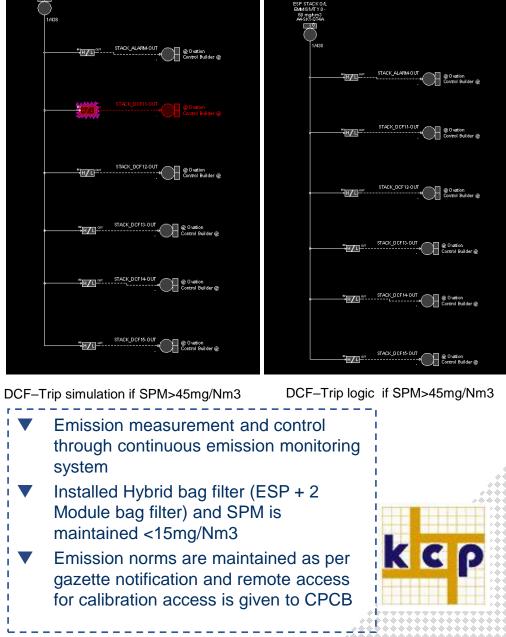
Bed ash re-cycling, with sieving machine installed. Re-cycle to bed material Bunker



Ash Bricks with Bed ash, KCP has own bricks manufacturing unit adjacent to CPP

Bed ash silo – 120M3 Dense phase pneumatic handling system, Covered wall protection to avoid fugitive's

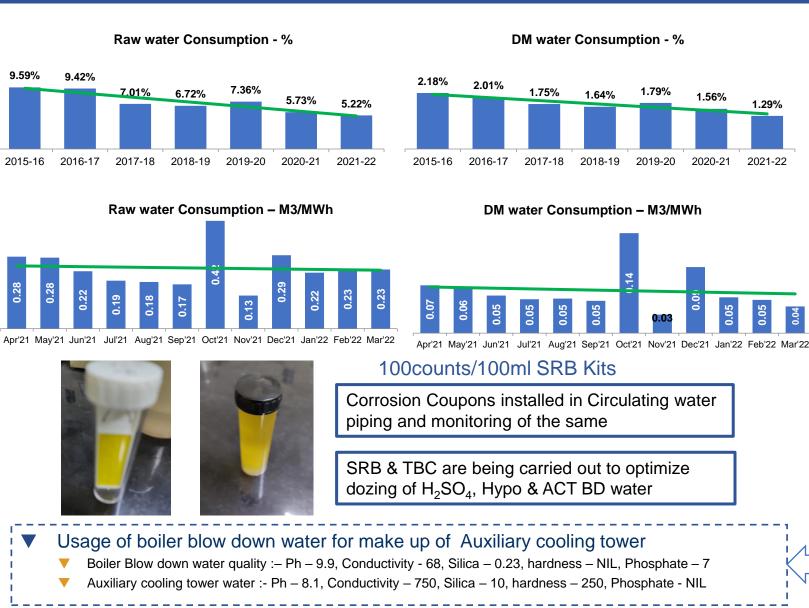
Environment Management - Emission


IF ≥45

IF ≥49

8 🔵 🙀 2:54 PM

DCF # 13 WILL BE TRIPPED


DCF # 14 & 15 WILL BE TRIPPED

Screen shot on live mode while DCF Trip

Afstart 📜 🧕 🙆 🕥 🚿

Environment management - Water

Whether plant is Zero liquid discharge □ YES

9.59%

2015-16

9.42%

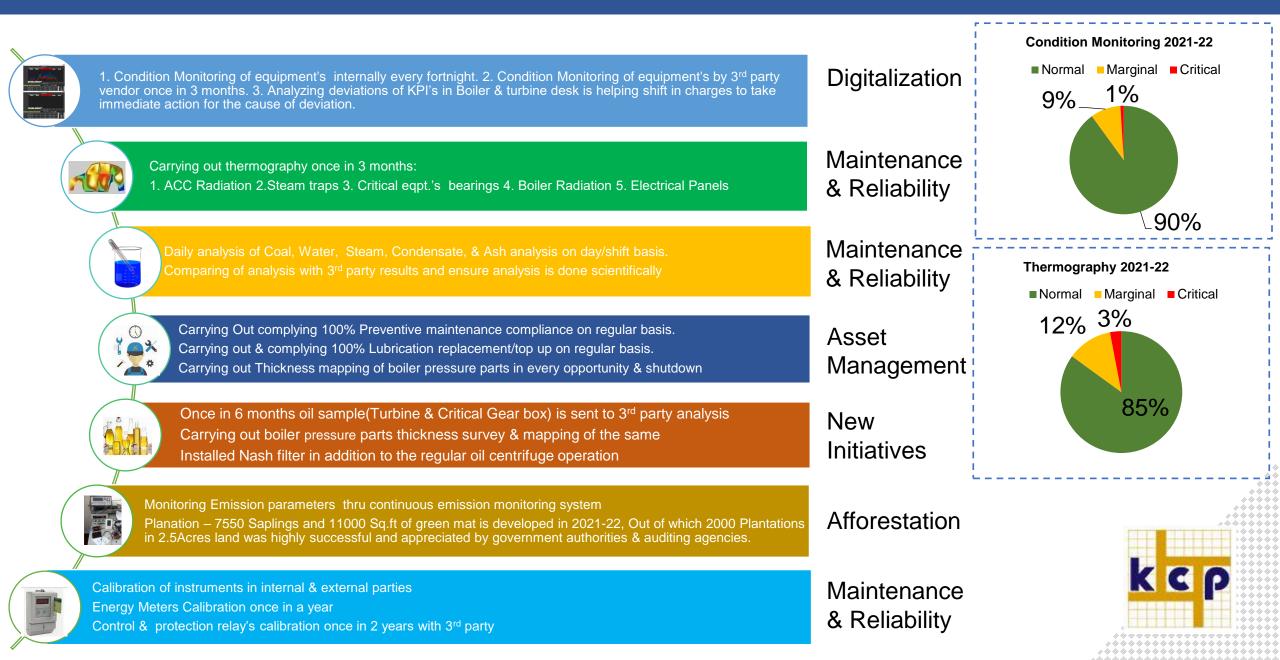
2016-17

7.01%

2017-18

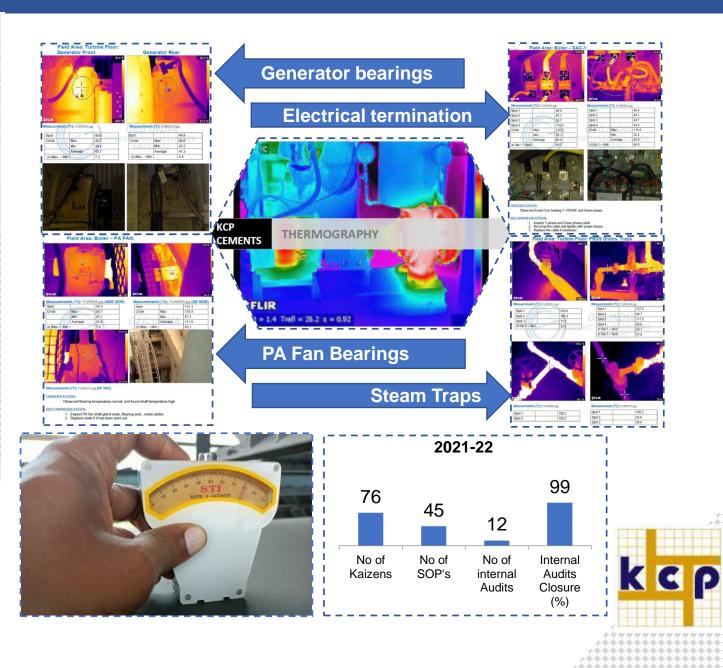
Best Practices in water Management:-

HP Dozing gty is optimized by which phosphates are reduced, resulting in reduction of boiler blow down water. Boiler blow down water is routed to Auxiliary cooling tower where the Conductivity and silica are suitable for the Auxiliary cooling tower. Water, Steam and condensate analysis is being done once in a shift and is compared with standards on every day basis. Water samples are being sent to third parties and other power plants, analysis of the same is compared with our readings.

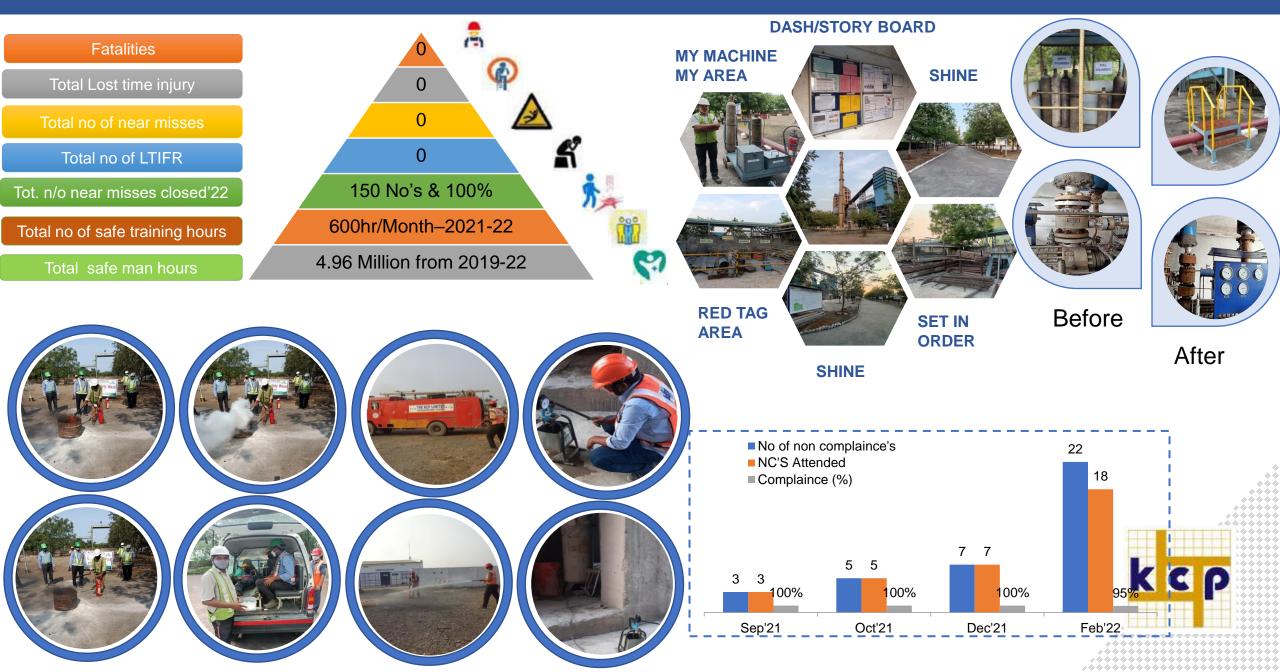

Raw water is pumped to another storage tank and from such storage tank one more pump is utilized for ash conditioner, the same is replaced with single effluent water pump(instead of two pumps) by laying a separate line. By which raw water and Auxiliary power savings are obtained.

- SRB (Sulphate reducing bacteria) is being carried out and H2So4 dozing rate & ACT blow down rate is optimized.
- TBC (Total Bacteria Count) is being carried out by which biocide and Hypo dozing rates are optimized.
- Corrosion coupons (SS & MS) are being installed in circulating water and continuously monitored on every fort night basis and comparing with standards (SS - 0.5MPY. MS - 3MPY)
- 5S jobs are initiated in DM plant by which document retrieval time and chemicals identification are clearly visible, maintain the water parameters in control range are being monitored.

Daily 3 to 5KL of water is saved



Best Practices carried out at 1 X 18MW CPP



Best Maintenance Practices carried out 1 X 18MW CPP

	Eas									
LUBE EXPERT OF ANALYSES PROGRAM	"A	Aimil Lto	4.			NORMAL				
OPN-17	57	TEST REPORT	5 Technologies	/2018-19/30-	328/038					
ANALYTICAL FERR	OGRAPHY /	CPP TURBINE	-TURBINE O	AS PER AST		09.03.2021				
EQPT NAME COMPONENT		TUR	BINE		REPORT	17.03.2021				
MFR			AILABLE			VAD 4685				
LUBE NAME RESERVOIR CAP	TURBI	NE XT46(HIN 855	2 Ltrs	KOLIUM)						
Remarks:Continue normal operation	no abnorma			the ferrogram		DVA				
Discussion of Results: The wear particl Normal rubbing wear (<15 microns) ; Low alloy steel severe sliding wear par bearing wear particles of size ranging in negligible quantities.Sand/dirt parti	varticles are ticles of size up to 30 mis	observed in s e ranging up t crons are obse	o 24 microns erved in smal quantities.	are observed I quantities.R	in small quant	15.0. ities.Babbit es are observed				
Sample Date			28.12.2018			-				
Machine Conditi		# WPC	NORMAL	NORMAL						
ACCEPTABLE WPC LIMIT: (Wear particle concentration)	15.0.	# WPC	8.4 28.57	26.42						
Wear Particles type Ferrous Wear	UOM	Rating			e/Particles Circ	in Microor				
Ferrous Wear	U.UM	Kating	sevent	, in 0-10 sca	e, Particles 5(2)	an pricions				
Rubbing Wear- Wear Particles of Size less than	HODERATE	5-7		2						
15 microns	HEAVY	8-10								
Siding Wear-Elongated particles of aspect ratio	PEW INCOME AND	5-7	2/22	2/24						
>30:1	HEAVY	8-10								
Cutting Wear-Curly particles of aspect ration	rew	1-4								
>50:1 due to abrasive contamination or misalignment.	HODERATE	5-7								
	PEAVY	8-10								
Chunks-Gear Wear (Pitch line	HODERATE	5-7								
fatigue/Scoring/Scuffing particles)	HEAVY	8-10								
Reworked- Laminar Particles (Bearing Wear) - Fatigue /Pitting/	rew	1-4								
bearing wear) - Fabgue / Htong/ Spallingparticles.	HEAVY	8-10								
	PEW	1-4								
Spheres-Early indication of Rolling contact fatigue.	HODERATE	5-7								
	HEAVY	8-10								
Dark Metallo-Oxides(Black Oxides)-Due to	NODERATE	5-7								
insufficient Lubrication.	HEAVY	8-10								
	PEW	1-4	1	1						
Red Oxides(Rust/ Ferrous oxides)	HODERATE	5-7								
	PEW	8-10								
Corrosive Wear Debris- Additive depetion/TAN value increase.	HODERATE	5-7			Saakon Saakon Saakon Saakon Saakon TH 0 7690-11 RECEIVED OP.03.22 RECORT OP.03.22 RECEIVED VAD 46 LocATION N/A M/CHRS M/A M/CHRS M/A M/CHRS M/A M/A M/A M/CHRS M/A M/A					
1000 m/2000.	HEAVY	8-10								
Others	FEW	1-4								
zhen	HEAVY	8-10								
	TRACT.	0.10								
Environmental Condition: Temperature			56% * 5%			Page: 1 of 2				
Plantation from las	st thre	е			livova	ski				
years		13900	ιZ							
					antati	ons				
	550		1	was a major						
2946 2681				su	cces	s in				
2019-20 2020-21 202	21-22	Green		2	2021-2	22				
2013-20 2020-21 202	_ 1 - 2 2	Carpet	j.							

Best Safety Practices & Implementation of 5S.

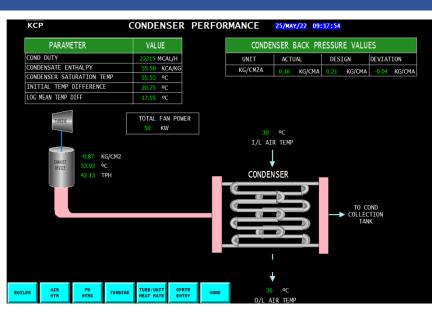
Team work employee involvement & Monitoring

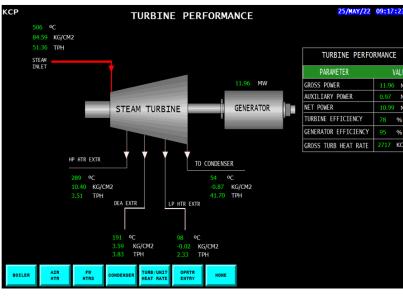
Daily Generation report with comparison with national best achieved figures


Root Cause failure analysis

Deviation Report

{	kcp			D, Unit # 2 RK PU												R	ROOT CAUSE FAILURE ANALYSIS	The KCP Limited, Crassed Portugation Unit - II, Compared Production Unit - II, Deviation Report DateD 03.06.2022					
1		CPP	· · ·	rformance l	_	Date	31	MAR	2022						Se. Ba	Purlimbur	OEG/KCP-CPP-04 Poc ID		Jaggayyapet (M),Krishna District, Andhra Pradesh-521175, INDIA				
Parameters UOM		Opening	g Generation/Import		Export / Consumption		otion	Closing	Efficiency Parameters		Bench			1 Vark Permit Banker 2 Equiparal		Pailer	Equip	oment Name of the parameters L	oM 24.06.2019	03.06.2022	Variance	Reason	
		Stock	O/D	MTD	YTD	O/D	MTD	YTD	Stock	· · · · · ·	Marking		MTD	YTD		Area Name of Employee Reporting	Duiles Ded Cuil Zuur 11 VerezPealap /D. Venkala Ran.		Turbine Running Hrs Hou Generation My		24.00		
Power Units	MWh		371.668	9957.472	121313.124	343.331	9203.175	111890.986		Plant Load Factor- PLF (%)	100%	0.00%	76.92%	83.74%		Equipment Slapage Bale and Equipment Resource Bale as	ad 13/87/2822;Tarkiar;14.12 Hrs.		Generation Mv		268856		
Auxillary Consumption	MWh					28.337	754.297	9422.138		Auxilary Consumption (%)	7.50%	7.62%	7.58%	7.67%		Tulal Slupage Time (Bea) Reason for Sluppage (delail) denoription of ukal	MERCENTRA In 11,411 (18.19) has many coled kuller lake te skape an formare leng drapped frantfill in 111 deg. 21,411 (8.19) hen krakape untfirmed an brang akanemal named akarened frantformare.	1 G	Aux Consumption Mv		24158	-1356	
Advindry Consolipiion	MIT			-								1.02/0				Lapprord	3]. Al 16.55 kee Land endaalise as CPP also hel fean 14 MW. 4]. Al 16.23 kee Land as CPP endaard ay in 2 MM. SJAI 17.25.25 kee		PLF X	63.55% 8.31%	62.24% 8.99%	0.00	
Steam	MT		1563	42772	519316	1530	41849	506106		Sp. Steam Cons. (MT/MWh)	4.09	4.12	4.20	4.17			Tarkine begand manually and builter making aborbed. 5(0x 11.17,2122,21 14.18 for Builter Tark also adding replacement aborbed. 7(0x 14.17,2122,21 14.18 for Builter Key all Builts or films many held. 10(0x 13.17,212) and 14.15 for	Р	Aux % % %	8.312	8.33%	-0.68	
Coal	MT		247	7392	128130	375	10949	121950		Sp. Coal Cons. (MT/MWh)	N/A	1.01	1.10	1.01			ber all Byrenin weining sampleied. Builer Lighting dans . 2]Al 12.21 ber TG ralling slavied and fall uperd eranked al 14.84 ben.			ikvii	2745		Generation less due to Line -2 in stop
Bed Ash	MT		28	726	3839	28	726	3633		Station Heat Rate(Kcal/KWh)	3069	3027	3100	3119	1		11jal 14.42 km Ty aquatrasiand wilk yrid. inner and up in 5 mm. 12jal 14.24 km in ad		Boiler Steam Generation MT	1186	1171		condition
Fly Ash	MT		180	4510	58331	224	4517	58263		Turbing Heat Pate/Keat/KWh)	2540	2544	2422	2674	1				Turbine steam Consumption MT Feed water Consumption MT	1150	1136		
1	MI		100	4510	20221	204	4017			Turbine Heat Rate(Kcal/KWh)		2564	2632				METHOD With here the various		AM & DM Make Up(production) M3	30	36		
Raw Materials				Receipt			Consumption			Run Hours	UoM	O/D	MTD	YTD	j			i VA	remer resser	m2 83.8	83.09	84.60	
Bed Material	MT	30	0	0	0	0	0	30	30	Turbine (Hrs)	Hrs	0	719	8048			Initial Refracity work inbetween and below the		TG inlet Temperature Deg Specific Steam Consumption T/H		507.20 4.23	516.50	
South African Coal RB # 3	MT	0	0	0	1989	0	0	1989	0	Boiler (Hrs)	Hrs	0	720	8097	1		bed cols, bed spechader cols vasnot Chivasnot Didologing of refractory patches cols vasnot Didologing of refractory patches due to high Didologing of Didologing of refractory patches due to high Didologing of Didologing of refractory patches due to high Didologing of Didologing of Dido		Specific Steam Consumption T/M		4.36		
1												č					uniform all over errolion/velocity rate bed coll exposed in the flucture in the flucture bed		Vacuum pressure KgR		-0.867		First comp Bottom-1, Third comp-1 bottom-1 dropped up to 150 Deg Later
Indonesian Coal	MI	8200	U	2/0	24556	15	1493	16372	8185	CHP (Hrs)	Hrs	0	209	2558	1	Probable Canors of Pailare [Real Canor Analysis] Transport/Microsoft processor	tack of proper		VBT Deg DBT Deg		37.6		First comp got normalised at 13.30 hrs
Indian Coal G5	MT	0.00	0.00	0.00	2040.89	0.00	0.00	2041	0	Production Rate	BEST	O/D	MTD	YTD	;	plain paper and allowing hand welling paper with this request - Nord and encoding to well-Nieding here, this is	approach for errolion and reduction in	i Al	CC Steam Exhuast Temperature Deg		52.82		and again dropped at 14.00 hrs. Mixing given to first & third comp was abnormal
Indian Coal G13	MT	3081.28	247.09	7121.95	95582.79	360.00	9427.00	97587	2968	Boiler steam Gen. (TPH)	74.23	#DIV/0!	59.44	64.14	1	just tim illustration parques.	Intricate areas of BET Tube Failure.		ACC Power Consumption KV		4263	-3161	from 14.00 hrs. By increasing airflow
I Australian Coal	MT	0	0	0	3166	0	0	3166	0	DM water Gen. (M3/Hr)	11.00	0.00	9.85	9.90	j		material contribute for errodon.	! 	DM Plant Run Hours Hou	4.01 s 3	15.86		intermittently to raise the bed temp.
4							Š		, ,			*000					MACHINE MATTRIAL		Raw water Consumption M3	105	131		Avg air Flow 69.0 tph; Avg Cl2:5.89%; Avg
South African Coal	MI	U	U	U	143	U	U	143	U	CHP Production (TPH)	85.00	#DIV/0	51.97	47.64	1			¦ v	TP DM Water Consumption M3 Soft Water Consumption(C1 M3	22	11	'	CD:208 mg/N-m3; Vindbox
Biomass fuels	kL	0	0	0	652	0	29	652	0	Sp.DM Water Cons. (M3/MWh)	0.03	0.03	0.04	0.06			Miskouni M3 WTP Pover Consumption KWH		234	60 211		pr:548mmwc.ESP DP:63.4mmwc.	
Specific Energy Consumption	UoM	Natnl. Best	OTD	MID	YTD	Dept PM's %	OTD	MTD	YTD	SP Water Consumption	Nat.Best	OTD	MTD	YTD		Baul Court Mealified	1)Engenium of Builee RHS ving beader kanger lake kelaeren 10 h 11 ked mil an referadurg galak gel ermaned in emming 20 auf ium		Specific Power Consumption	0.85	0.78		
Pumps	Kwh/MWh	18.2	22.033	23.64	24.03	Mech.	100%	100%	100%	Sp.RW Cons.(m3/Mwh)	0.25	0.48	0.23	0.19	i		ked waterial initialed economy and reduction in thinkness which led to take failure.		D Fan Average RPM RPI D Fan Power Consumption KM		565	96	
l Fans	Kwh/MWh	15.5	19.862	20.88	23.64	Electrical	100%	100%	100%	Sp.CT W Cons. (m3/MWh)	0.06	0.14	0.11	0.06			ACTION PLANNED RESPONSIBIL TARGET DATE Deve date States		ID Fail Specific power KT	4.56	4.30	36	
											0.00			1		Correction and Personalise	One in Ennelling Opportunity as interactor lines, anapter importion and patakanesk of orderantary and Anne and Anne and		FD Fan Average RPM RP	1052	1082		
ACC	Kwh/MWh	14.6	11.239	7.28	6.41	C&I	100%	100%	100%	Effluent Generation	0.06	0.00	0.00	0.05	i	Asline Planerd	Palak usek af refeaslang by nyeriraand/amyeleal	i Fa	Ans FD Fan Power Consumption KW	12.29	3440	-65	
Compressor & AC	Kwh/MWh	2.8	3.939	10.58	8.33	Loading %	OTD	MTD	YTD	EMISSIONS	Nat.Best	OTD	MTD				Harager 4		PA Fan Average RPM RPI		1126		
СНР	Kwh/MWh	NA	1.652	1.92	1.86	IAC # 1	0.00%	0.00%	57.89%	SPM (mg/Nm3)	10	10.75	10.85	į	1		STATUS DONE BY DATE Temporal all the referance walls, palakap work date Teath report address of the red photocal Kiras Kenser H 14.87.2822		PA Fan Power Consumption KW		1180	30	
WTP	Kwh/MWh	NA	0.724	0.46	0.43	IAC # 2	78.26%	78.26%	62.39%	SOX (PPM)	600	302.04	231.91		1 12	Carrealiar and Presentiar Balian Pallan-up and	applied under the aladed alad area, load of the load with which are more all und annules. Our is S		specimerrians power KW	4.41 1171 21.26	4.39		
Comprose AHP	Kwh/MWh	NA	2.042	3.61	4.00	SAC # 1	0.00%	0.00%	84.81%	NOX (PPM)	300	02.00	146.62	!	1	C1	maalka/Opportunity fine complete importion and palakuurkafe efe aalara, and phanasal uill be daar by energingad maaina		BFP SuciDisc pressure & temp KgA		4.2/89.9/135		
Compressor & AHP	KWH/MWH	NA	2.042	3.01	4.00		0.00%		04.01%	NUX (FFM)		73.00		i	i			l i	BFP Flow M3		5673	000	
Turbine MCC	Kwh/MWh	NA	1.663	1.80	1.51	SAC # 2	95.00%	95.00%	82.49%	Fly ash Silo LOI (%)	<5%	7.92	7.53	!	1	T		: L_	BFF Specine rover KM		5666	800	




Team work employee involvement & Monitoring

.....................

Team work employee involvement & Monitoring

- Hour wise, shift wise & day wise all major KPI's are monitored in DCS by various performance sheets in online.
- The same has facilitated shift in charges to take immediate action at differed parameters.

Job planning at CPP:

- Day opening with daily tool box talk, JSA, PTW's – work allocation as per plan.
- Preparation of DGR, Deviation analysis.
- Checking of log records, defect register and planning the jobs as per priority.
- Daily meeting with all section heads & shift in charges in operation.
- Compliance of long/short term goals

Integrated Management System

Learning from CII Awards ...

- To bring in recognition to the Organisation through unique innovative practices.
- Creating platform for sharing of knowledge which takes to sustainable growth through optimum utilization of resources, diversified Quality Products, Processes and Services for all our Stakeholders.
- Understand the Industry best and implement the same in our Organisation.
- Creating a competitive edge amongst the industries through right person is assigned for the right job and that they grow and contribute towards organizational excellence
- Employee engagement & belongingness increased
- Implementing the modifications done at other sites immediately which are having zero/less investments. And also considering the major modifications in the budget approvals and getting the required approvals with ROI.

CP

1X18MW Captive Power Plant – KCP Cement Ltd

EHS

FAITH & SAFE

NATIONAL

ENERGY

MANAGEMENT AWARD 2020

XCELLENT ENERGY EFFICIENT UNIT

AWARDED TO

Best Energy Efficient plant (NHR) 2021-22 – Mission Energy Foundation. NATIONAL

ENERGY

NATION

MANAGEMENT

INCELLENT EL

- 5 Star excellence award 2020-21 – CII
- National Energy management award 2019 – CII
- National Energy management award 2020 - CII